Strong Convergence Theorems for Generalized Variational Inequalities and Relatively Weak Nonexpansive Mappings in Banach Spaces
نویسندگان
چکیده
In this paper, we introduce an iterative sequence by using a hybrid generalized f−projection algorithm for finding a common element of the set of fixed points of a relatively weak nonexpansive mapping and the set of solutions of a generalized variational inequality in a Banach space. Our results extend and improve the recent ones announced by Y. Liu [Strong convergence theorems for variational inequalities and relatively weak nonexpansive mappings, J. Glob. Optim. 46 (2010), 319–329], J. Fan, X. Liu and J. Li [Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces, Nonlinear Analysis 70 (2009), 3997–4007], and many others.
منابع مشابه
Weak and strong convergence theorems for a finite family of generalized asymptotically quasinonexpansive nonself-mappings
In this paper, we introduce and study a new iterative scheme toapproximate a common xed point for a nite family of generalized asymptoticallyquasi-nonexpansive nonself-mappings in Banach spaces. Several strong and weakconvergence theorems of the proposed iteration are established. The main resultsobtained in this paper generalize and rene some known results in the currentliterature.
متن کاملConvergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).
متن کاملConvergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces
In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.
متن کاملNew three-step iteration process and fixed point approximation in Banach spaces
In this paper we propose a new iteration process, called the $K^{ast }$ iteration process, for approximation of fixed points. We show that our iteration process is faster than the existing well-known iteration processes using numerical examples. Stability of the $K^{ast}$ iteration process is also discussed. Finally we prove some weak and strong convergence theorems for Suzuki ge...
متن کاملApproximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces
We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...
متن کامل